Network Automation
with Ansgible

The greatest gift is that of time. This is my attempt to give you back some of yours.

History of Network
Management

History of Network
Management

History of Network
Management

e SNMP

“Simple” Network Management Protocol

History of Network
Management

e SNMP

“Simple” Network Management Protocol

e Oh, and “screen scraping”

What is this DevOps of
which you speak?

e “DevOps (a clipped compound of
"development" and "operations") is a
software engineering practice that
aims at unifying software
development (Dev) and software
operation (Ops).”

Source: https://en.wikipedia.org/wiki/DevOps

https://en.wikipedia.org/wiki/DevOps

Development QA

SOFTWARE ENGINEENRING) (QUALITY ASSURANCE

Operations

In Plain English?

In Plain English?

The love child between systems/network
administrators and programmers

Configuration

Management Tools

), ;:?‘,

Systern Center
Conhyurauon Maneuer

SALTSTACK

o

TS @ @, python
AL o

SALTSTACK

So Why Ansible?

Ansible

The name "Ansible" references a fictional
instantaneous hyperspace communication
system (as featured in Orson Scott Card's

(1985),[9][10] and originally
conceived by Ursula K. Le Guin for her novel
Rocannon's World (1966)).[11]

Source: https://en.wikipedia.org/wiki/Ansible_(software

https://en.wikipedia.org/wiki/Ansible_(software)

Agent-based vs. Agent-less *

e CFEngine e Ansible
o Chef

e Munki

e Puppet

e SaltStack

Agent-based

Terms:

Server == Puppet Master, Salt Master, etc.

Client== Puppet Agent, Salt Minion, etc.

Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-based

Client

Terms:

Server == Puppet Master, Salt Master, etc.

Client== Puppet Agent, Salt Minion, etc.

Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-based

Client

Terms:

Server == Puppet Master, Salt Master, etc.

Client== Puppet Agent, Salt Minion, etc.

Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-based

Client

Client

Terms:

Server == Puppet Master, Salt Master, etc.

Client== Puppet Agent, Salt Minion, etc.

Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-less

Client

Agent-less

Client

Agent-less

Client

Advantages of
Agent-based

server

Client "

Advantages of
Agent-based

server

Client "

Advantages of
Agent-based

Client "

Advantages of
Agent-based

Client

Typically agents check in, thus coming out through any firewalls vs. the server trying to come in. Of course, in a tightly regulated environment with proxy
servers, etc., this may require additional work, but often things “just work.”

Advantages of
Agent-based

Client

Client

Typically agents check in, thus coming out through any firewalls vs. the server trying to come in. Of course, in a tightly regulated environment with proxy
servers, etc., this may require additional work, but often things “just work.”

Advantages of
Agent-based

Client

SALTSTACK

Salt Stack is different from other agent-based configuration management tools in that it creates a persistent connection back to the minions. This allows
for immediate execution of commands.

For example, you get a call that some of your users are experiencing issues getting to Google. With Salt, you could tell all of your minions to ping Google’s
servers and to report back. This gives you insight from across your network (and also gives you a kind of botnet of your very own!).

Advantages of
Agent-based

Client _'

Persistent bus connection

Server
Client "

SALTSTACK

Salt Stack is different from other agent-based configuration management tools in that it creates a persistent connection back to the minions. This allows
for immediate execution of commands.

For example, you get a call that some of your users are experiencing issues getting to Google. With Salt, you could tell all of your minions to ping Google’s
servers and to report back. This gives you insight from across your network (and also gives you a kind of botnet of your very own!).

Advantages of
Agent-less

Client

Advantages of
Agent-less

>
Ao S

Advantages of
Agent-less

>
Ao S

Advantages of
Agent-less

>
..

Agent-less

Client

Agent-less™®

Client

Agent-less™®

Client

e

Agent-less™®

Client

X

Client

I\

* for clients which support Python,
agent script sent through SSH
tunnel to run on far end

Ansible 2.x
(currently ve.4)

>
Ao S

Ansible 2.x
(currently v2.4)

>
s

SSH
e raw module >
server © DRetwork modules e
e.s., Ios, Junos, etc.

e

A >

Network Modules

e A10

e ACI (Cisco)

e Aireos (Cisco)

e Aos

e Aruba

e Asa (Cisco)
Avi
Bigswitch
Citrix
Cloudengine
Cloudvision (Arista)
Cumulus
Dellos10
Dellos6

Dellos9

Eos (Arista)
F5

Fortios
Illumos
Interface
Ios (Cisco)
Tosxr (Cisco)
Junos
Layerd
Layer3
Lenovo

Netconf

Netscaler
Netvisor
Nuage
Nxos (Cisco)
Ordnance
Ovs
Panos
Protocol
Radware
Routing
Sros
System

Vyos

Source: http://docs.ansible.com/ansible/latest/list_of network modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html

Network Modules

e A10

e ACI (Cisco)

e Aireos (Cisco)

e Aos

e Aruba

e Asa (Cisco)
Avi
Bigswitch
Citrix
Cloudengine
Cloudvision (Arista)
Cumulus
Dellos10
Dellos6

Dellos9

Eos (Arista)
F5

Fortios
Illumos
Interface
Ios (Cisco)
Tosxr (Cisco)
Junos
Layerd
Layer3
Lenovo

Netconf

Netscaler
Netvisor
Nuage
Nxos (Cisco)
Ordnance
Ovs
Panos
Protocol
Radware
Routing
Sros
System

Vyos

Source: http://docs.ansible.com/ansible/latest/list_of network modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html

Network Modules (cont.)

Cisco I0S
e Jos
¢ ios_banner - Manage multiline banners on Cisco IOS devices
ios_command - Run commands on remote devices running Cisco I0S
ios_config - Manage Cisco IOS configuration sections
ios_facts - Collect facts from remote devices running Cisco I0S
ios_interface - Manage Interface on Cisco IOS network devices
ios_logging - Manage logging on network devices
ios_ping - Tests reachability using ping from IOS switch
ios_static_route - Manage static IP routes on Cisco IOS network devices
ios_system - Manage the system attributes on Cisco IOS devices
ios_user - Manage the aggregate of local users on Cisco IOS device

ios_vrf - Manage the collection of VRF definitions on Cisco IOS devices

docs.ansible.com/ansible/latest/list_of_network _modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html

I am NOT idempotent!

Wait... what?

Idempotent

Irdem po-tent
/ Tdom' pdtic)nl, &don pSYo)t/ ©

MTREATES
yecae
e Hengodant

T Oy widwimsl A ool Te b wndenged vvaben wlies imdiudand o ol vine vpme i we
¥y et

nown
Niwgaste 1l o

1 o Meemotert deserd

Mokt 10N onrtury harm Lo idom ‘e’ + setord!

oot o O orepaope

Source: “The Google”

)

redhat

I\

A

RED HAT ANSIBLE TOWER

Ceale = Aareras cna e vaur * tam2tion
)

CONTROL KNOWLEDGE DELEGATION

RED HAT ANSIBLE ENGINE

Support for yous Anchle aurnmarion

SINPLE POWERFUL AGENTLESS

FUELED EY AN INNOVATIVE OPEN SQURCE COMMUNITY

OPS

IT managers, | arga teams

RED HAT ANSIBLE TOWER

RED HAT ANSIBLE ENGINE

DEV
Playbook authors, Small teams

Red Hat Ansible

Ansible (source) Red Hat Ansible Engine

Red Hat Ansible Tower

Red Hat Ansible

Ansible (source) Red Hat Ansible Engine

Red Hat Ansible Tower

So THAT’S why

Ansible

Live Demo

Deeper Dive

System Requirements

System Requirements

e Control Machine Requirements

e Currently Ansible can be run from any machine with
Python 2 (versions 2.6 or 2.7) or Python 3 (versions
3.5 and higher) installed (Windows isn’t supported for
the control machine).

http://docs.ansible.com/ansible/latest/intro_installation.html#control-machine-requirements

System Requirements

e Control Machine Requirements

e Currently Ansible can be run from any machine with
Python 2 (versions 2.6 or 2.7) or Python 3 (versions
3.5 and higher) installed (Windows isn’t supported for
the control machine).

e Managed Node Requirements

¢ On the managed nodes, you need a way to
communicate, which is normally ssh. By default this
uses sftp. If that’s not available, you can switch to scp
in ansible.cfg. You also need Python 2.6 or later.

Source: http://docs.ansible.com/ansible/latest/intro_installation.html#control-machine-requirements

http://docs.ansible.com/ansible/latest/intro_installation.html#control-machine-requirements

Installing Ansible

Installing Ansible

e Yum (CENTOS/RHEL)
e Apt (Ubuntu/Debian)

e Pip

Installing Ansible

e Yum (CENTOS/RHEL)
e Apt (Ubuntu/Debian)
e Pip

$ sudo easy_install pip
$ sudo pip install ansible

Installing Ansible

e Yumn (CENTOS/RHEL)
e Apt (Ubuntu/Debian)
e Pip

$ sudo easy_install pip
$ sudo pip install ansible

If for any reason you have issues, try:
$ sudo -H pip install —-ignore-installed —-upgrade ansible

o o o

Running Ansible

Running Ansible

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

Running Ansible

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -m raw —-a "command" -u <user> -k

Running Ansible

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -m raw —-a "command" -u <user> -k

FAILS.

Running Ansible

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -m raw —-a "command" -u <user> -k

FAILS.

No inventory file. This is a minimum requirement.

Running Ansible

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -m raw —-a "command" -u <user> -k

FAILS.

No inventory file. This is a minimum requirement.

So we need to create an inventory file.

Running Ansible

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -m raw —-a "command" -u <user> -k

FAILS.

No inventory file. This is a minimum requirement.

So we need to create an inventory file.

Inventory files are plain text files which contain a list of devices
which you intend to manage with Ansible. It can be as simple as a
straight list of IP addresses. Inventory files can be formatted in
different ways, but a common one is the Windows INI file format. The
other common format is YAML, which is also the format used to write
Ansible Playbooks.

Simple Inventory File

10.1.1.1
10.1.1.2
10.1.1.3
nodel.domain.com
node2.domain.com

last.item.com

Inventory File

[routers:children]
backbone-routers
gateway-routers

[backbone-routers]

backbonel ansible_host=10.
backbone2 ansible_host=10.
backbone3 ansible_host=10.

[gateway-routers]
gatewayl ansible_host=10.
gateway?2 ansible_host=10.

[switches]

switchl ansible_host=10.
switch?2 ansible_host=10.
switch3 ansible_host=10.
10.1.4.1

10.1.5.1

Inventory File

[routers:children]
backbone-routers
gateway-routers

[backbone-routers]

backbonel ansible_host=10.
backbone2 ansible_host=10.
backbone3 ansible_host=10.

[gateway-routers]
gatewayl ansible_host=10.
gateway2 ansible_host=10.

[switches]

switchl ansible_host=10.
switch?2 ansible_host=10.
switch3 ansible_host=10.

10.1.4.1 .
10.1.5.1 Host variable

Inventory File

[routers:children]
backbone-routers
gateway-routers

[backbone-routers]

backbonel ansible_host=10.
backbone2 ansible_host=10.
backbone3 ansible_host=10.

[gateway-routers]
gatewayl ansible_host=10.
gateway?2 ansible_host=10.

[switches]

switchl ansible_host=10.
switch?2 ansible_host=10.
switch3 ansible_host=10.

10.1.4.1 .
10.1.5.1 Host variable

Inventory File

[routers:children]

backbone-routers Groups of Groups
gateway-routers

[backbone-routers]

backbonel ansible_host=10.
backbone2 ansible_host=10.
backbone3 ansible_host=10.

[gateway-routers]
gatewayl ansible_host=10.
gateway?2 ansible_host=10.

[switches]

switchl ansible_host=10.
switch?2 ansible_host=10.
switch3 ansible_host=10.

10.1.4.1 .
10.1.5.1 Host variable

Running Ansible ()

Running Ansible ()

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

Running Ansible ()

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -i inventory.txt -m raw —-a "command" -u <user> -k

Running Ansible ()

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -i inventory.txt -m raw —-a "command" -u <user> -k

Running Ansible ()

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -i inventory.txt -m raw —-a "command" -u <user> -k

It WORKS! But this is a lot of typing.

Running Ansible ()

$ ansible <device list> -m <module> -a <attributes> -u <username> =k

$ ansible 10.1.1.1 -i inventory.txt -m raw —-a "command" -u <user> -k

It WORKS! But this is a lot of typing.

Let’s create an ansible.cfg file to hold our default settings.

ansible.ctg

B B B
Default configuration values
e e B

[defaults]

host_key_checking = False ;Disable checking SSH keys on remote nodes
record_host_keys = False ;Disable recording newly discovered hosts in hostfile
timeout = 10 ;Specify how long to wait for responses
forks = 30 ;Number of parallel processes to spawn

;Playbooks should prompt for password by default
ask_vault_pass = True
The following is since we're dealing with Cisco I0S mostly
gathering = explicit ; facts not gathered unless directly requested in play
log_path = ./ansible.log ;log information about executions

;default module name (-m) value for /usr/bin/ansible

vault_password_file = /path/to/vault_password_file

(Windows INI format)

ansible.cfg Locations

e ANSIBLE_CONFIG
(an environment variable)

e ansible.cfg (in the current directory)
e .ansible.cfg (in the home directory)

e /etc/ansible/ansible.cfg

Running Ansible (3)

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

$ ansible 10.1.1.1 —-a “comman

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

$ ansible 10.1.1.1 —-a “comman

et

$ ansible 10.1.1.1 -a “show version”

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

$ ansible 10.1.1.1 —-a “comman

et

$ ansible 10.1.1.1 -a “show version”
$ ansible routers -a “show version”

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

$ ansible 10.1.1.1

et

$ ansible 10.1.1.1 “show version”
$ ansible routers “show version”
$ ansible routers “show version” | grep “SUCCESS\|Version”

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

ansible

Joe

ansible 10.1.1.1 “show version”
ansible routers “show version”
ansible routers “show version” | grep “SUCCESS\ |Version”
ansible switches “show run” | grep “SUCCESS\ |username”

ansible

Joe

ansible
ansible
ansible
ansible
ansible

Running Ansible (3)

$ ansible <device_list> =i <inventory> —m <module> -a <attributes> -u
<username> -k

10.1.1.1
routers
routers
switches
all

version”

version”

version” | grep “SUCCESS\ |Version”
run” | grep “SUCCESS\ |username”
run | include ntp”| grep “SUCCESS\| ntp”

Example 1

(single file inventory)

~/
ansible.cfg
inventory. txt

setup_router.yml
vian.yml

Example 2

(Using directories)

ansible.cfg

group_vars/
backbone-routers
gateway-routers
switches

host_vars/
backbonel
backbone?2

switch3
inventory.txt
setup_router.yml
vian.yml

Example 2

(Using directories)

~/
ansible.cfg :
group_vars/ ansible host: 10.1.1.1
backbone-routers
gateway-routers

switches ansible _host: 10.1.1.2
host_vars/

backbonel///////////

EaCkbonez/ansible_host s 10183

switch3

inventory.txt
setup_router.yml
vian.yml

Ansible Playbooks

Ansible Playbooks

* YAML files

Ansible Playbooks

e YAML files
e Starting with Ansible v&.4

e Imperative (define each step) vs.
Declarative (define end state)

Playbook (raw)

Playbook (ios_command)

Playbook (ios_command)

Playbook (ios_command)

ansible-playbook show-version.yml -e “host=newtarget(s)"
ansible-playbook show-version.yml -e “host=routers”

Playbook (ios_config)

ansible-playbook set-vlan.yml -e “vlan=250 vlanname=My—new-VLAN"
rginid. ¢

Playbook (ios_facts)

gathe;"_subset : all

Precedence

In 2.x, we have made the order of precedence 12. play vars_prompt
more specific (with the last listed variables
winning prioritization): 13. play vars_f{files
1. role defaults [1] 14. role vars (defined in role/vars/main.yml)
2. inventory file or script group vars [2] 15. block vars (only for tasks in block)
. inventory group_vars/all 16. task vars (only for the task)
. playbook group_vars/all 17. role (and include_role) params
. inventory group_vars/* 18. include params
. playbook group_vars/* 19.include_vars
. inventory file or script host vars [2] R0.set_facts / registered vars
. inventory host_vars/* 21. extra vars (always win precedence)
. playbook host_wvars/*

10.host facts Source: http://docs.ansible.com/ansible/latest/
playbooks_variables.html#variable-precedence-
11.play vars where-should-i-put-a-variable

Learning Materials

e https://www.ansible.com/
e https://docs.ansible.com/

e https://www.ansible.com/webinars-
training

e https://www.udemy.com/ansible-for-

network-engineers-cisco-quick-start-

gns3-ansible/

https://www.ansible.com/
https://docs.ansible.com/
https://www.ansible.com/webinars-training
https://www.ansible.com/webinars-training
https://www.udemy.com/ansible-for-network-engineers-cisco-quick-start-gns3-ansible/
https://www.udemy.com/ansible-for-network-engineers-cisco-quick-start-gns3-ansible/
https://www.udemy.com/ansible-for-network-engineers-cisco-quick-start-gns3-ansible/

Questions?

ANSIBLE

http://frank.seesink.com
http://frank.seesink.com/presentations/Ansible-Fall2017
http://frank.seesink.com/presentations/Ansible-Fall2017
http://frank.seesink.com/presentations/Ansible-Fall2017

