
Network Automation Tapas

Frank Seesink, Title, Organization
Maria Isabel Gandia, CSUC/RedIRIS (GÉANT project),
Amy Liebowitz, Network Architect, University of Michigan
AJ Ragusa, Manager - Network Automation and Performance, GlobalNOC @ IU
James Harr, NetDevOps Engineer, Internet2
Shannon Byrnes, NetDevOps Engineer, Internet2

Network Automation
Tapas

Bite-sized talks to give the audience a
little something to chew on

Network Automation Tapas

• Frank Seesink, Senior Network Engineer
UNC Chapel Hill

• Maria Isabel Gandia
CSUC/RedIRIS (GÉANT project)

• Amy Liebowitz
University of Michigan

• AJ Ragusa
GlobalNOC

• James Harr
Internet2

• Shannon Byrnes, NetDevOps Engineer
Internet2

Why this session?

Network Automation Tapas

Getting Started with
Python

Python Software
Foundation

https://www.python.org/

Option #1

Python Software
Foundation

https://www.python.org/

Option #1

Installing Python
for Windows

Install Python - Windows

Install Python - Windows

Install Python - Windows

Install Python - Windows

Install Python - Windows

Install Python - Windows

Install Python - Windows

Python.org Windows Installer installs Python in

C:\Users\<user>\AppData\Local\Programs\Python\Python311\

Python modules (e.g., seen using pip list -v) are
located in

C:\Users\<user>\AppData\Local\Programs\Python\Python311\
Lib\site-packages\

Install Python - Windows

Option #2: Microsoft Store

Simply

1. open the Microsoft Store and search for “python”,
or

2. open PowerShell/Command Prompt and just type
python to bring up the Store.

Install Python - Windows

Install Python - Windows

Microsoft Store installs Python in

C:\Users\<user>\AppData\Local\Microsoft\WindowsApps\

Python modules (e.g., seen using pip list -v) are
located in

C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.11_…\LocalCache\
local-packages\Python311\site-packages\

Install Python - Windows

Option #3: Chocolatey
The Package Manager for Windows

https://chocolatey.org/

Simply open PowerShell as an administrative shell
(i.e., “Run as Administrator”) and enter

choco install python

Install Python - Windows

Install Python - Windows

Install Python - Windows

Microsoft Store installs Python in

C:\Python311\

Python modules (e.g., seen using pip list -v) are
located in

C:\Python311\Lib\site-packages\

Installing Python
for macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Install Python - macOS

Python.org macOS Installer installs Python in

/Library/Frameworks/Python.framework/Versions/3.11/

Python modules (e.g., seen using pip3 list -v) are
located in

/Library/Frameworks/Python.framework/Versions/3.11/lib/
python3.11/site-packages/

Install Python - macOS

Option #2: Homebrew
The Missing Package Manager for macOS (or Linux)

https://brew.sh/

Simply having Homebrew installed provides you with a
version of Python3 (it comes with the XCode Command
Line Tools that Homebrew installs). However, it is not
the latest. To update to the current version, simply
open Terminal and enter

brew install python

Install Python - macOS

Install Python - macOS

Install Python - macOS

Homebrew macOS Installer installs Python in

/usr/local/bin/

Python modules (e.g., seen using pip3 list -v) are
located in

/usr/local/lib/python3.11/site-packages/

Install Python - macOS

Option #3: MacPorts
An open-source community initiative to design an
easy-to-use system for compiling, installing, and
upgrading either command-line, X11 or Aqua based
open-source software on the Mac operating system

https://www.macports.org/

To install Python, simply open Terminal and enter

sudo port install python311 py311-pip

Install Python - macOS

Install Python - macOS

Install Python - macOS

MacPorts macOS Installer installs Python in

/opt/local/bin/

Python modules (e.g., seen using pip3 list -v) are
located in

/opt/local/Library/Frameworks/Python.framework/Versions/
3.11/lib/python3.11/site-packages/

Installing Python
for Linux

Install Python - Linux

RHEL/CENTOS/Rocky/Alma Linux
rpm/yum/dnf install python3

Ubuntu/Debian Linux
apt install python3

WSL

Python Basics

Python REPL

$ python3
Python 3.11.5 (v3.11.5:cce6ba91b3, Aug 24
2023, 10:50:31) [Clang 13.0.0
(clang-1300.0.29.30)] on darwin
Type "help", "copyright", "credits" or
"license" for more information.
>>> print("Hello world")
Hello world
>>>
To exit the REPL, hit [CTRL][D] or type exit().

REPL = Read, Evaluate, Print, and Loop

First Python Script

1. In a text editor write

#!/usr/bin/python3
print(“Hello world!”)

2. Save this to myfirst.py
3. Open a terminal, navigate to where

this file is located, and run
python3 myfirst.py

pip

pip is the package installer for Python.
You can use pip to install packages from
the Python Package Index and other
indexes.
e.g.,
pip install requests
pip install netmiko
pip install gspread

Python Package Index
(PyPI)

https://www.pypi.org/

netmiko

Python Package Index
(PyPI)

https://www.pypi.org/

Python Package Index
(PyPI)

https://www.pypi.org/

venv
The venv module supports creating lightweight
“virtual environments”, each with their own
independent set of Python packages installed in their
site directories. A virtual environment is created on
top of an existing Python installation, known as the
virtual environment’s “base” Python, and may
optionally be isolated from the packages in the base
environment, so only those explicitly installed in the
virtual environment are available.

- https://docs.python.org/3/library/venv.html

venv
So… why?

Once you begin using Python, you will inevitably
encounter situations where one Python program
expects a module v1 while another only works with v2.
If all Python scripts are in the same environment…
KABOOM!

Virtual environments allow you to isolate/separate
different Python programs from each other and
provide each Python program with the modules and
versions it expects.

Why We Need venv

Program 1

Module X
v1

Program 2 Module X
v2

Why We Need venv

Program 1

Module X
v1

Program 2 Module X
v2

site-packages

venv
For example, you might do the following:
$ python3 -m venv venv
$ ls -1 venv
bin
include
lib
pyvenv.cfg
$ source venv/bin/activate
(venv) $ pip list
This tells the Python interpreter to run module (-m) venv
and create a new virtual environment in a directory
named ‘venv’ in the current directory. We then activate
that virtual environment.

IDE
“An integrated development environment (IDE) is a
software application that provides comprehensive
facilities for software development. An IDE normally
consists of at least a source-code editor, build
automation tools, and a debugger.”
- https://en.wikipedia.org/wiki/
Integrated_development_environment

Examples:
• IDLE
• Visual Studio Code (VSCode) / VSCodium
• PyCharm

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

IDLE

In
sta

lle
d w

ith
 Pyth

on!

Visual Studio Code
(VSCode)

https://code.visualstudio.com/

Visual Studio Code
(VSCode)

https://code.visualstudio.com/

VSCode offers syntax highlighting, auto-completion,
integrated Git support, and too many features to list
here.

Be sure to check out their extensions which provide
almost everything a developer could hope for.

https://marketplace.visualstudio.com/VSCode

https://marketplace.visualstudio.com/VSCode

Thank You

https://frank.seesink.com/presentations/
Internet2TechEx-Fall2023/

Frank Seesink
frank@seesink.com

frank@unc.edu

https://frank.seesink.com/presentations/Internet2TechEx-Fall2023/
https://frank.seesink.com/presentations/Internet2TechEx-Fall2023/
mailto:frank@seesink.com

GN5-1

Public (PU)

Internet2 Technology Exchange, 19-09-2023
Minneapolis, USA

Data Formats: Reading and writing
JSON – YAML - XML
Maria Isabel Gandia Carriedo, CSUC/RedIRIS

network-eacademy@lists.geant.org

Definitions

● Data modelling (YANG, TOSCA)
○ Defines a representation of real-world

entities, their relationships and structure

● Data formats (XML, JSON, YAML)
○ Define how to encode the information in a

standardized way

● Protocols (NETCONF, RESTCONF,
gRPC...)
○ Define the operations, the requests and

responses of interactions

The real world

Gets represented as a

Data model

Is encoded in a

Data format

 ProtocolAre used within a

Data Serialisation Examples – Human Readable

XML
</>

JSON
{}

YAML
indentation

device:

 type: router

 vendor: MyOAVvendor

 ports: 4

 description: Access

{

 “device”: {

 “type”: “router”,

 “vendor”: “MyOAVvendor”,

 “ports”: 4,

 “description”: “Access”

 }

}

<network>

 <device>

 <type>router</type>

 <vendor>MyOAVvendor</vendor>

 <ports>4</ports>

 <description>Access</description>

 </device>

</network>

Writing JSON, XML and YAML files
● You can write JSON, XML and YAML files with any text editor like vim or

emacs
● If you like syntax highlighting, editors/IDEs such as Visual Studio Code,

Notepad++, Sublime.

https://www.vim.org/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/
https://notepad-plus-plus.org/
https://www.sublimetext.com/

Challenges Achievements Conclusions Q&A

Some Free Tools to Help You Write, Validate and Convert Your Files

• You can check your syntax, format your files or convert them using useful
free tools:

• https://www.freeformatter.com
• https://www.liquid-technologies.com/online-xml-validator
• https://onlineyamltools.com/edit-yaml
• https://www.yamllint.com/
• https://www.json2yaml.com/

https://www.freeformatter.com/
https://www.liquid-technologies.com/online-xml-validator
https://onlineyamltools.com/edit-yaml
https://www.yamllint.com/
https://www.json2yaml.com/

Some Cases Where We Use JSON, YAML, XML

• Web API output (AWS, Google maps, Github, X,...)
• Jenkins
• ELK stack (Elasticsearch, Logstash, Kibana)

JSON:

• Jenkins
• NETCONF
• RESTCONF

XML:

• Ansible
• Kubernetes
• Docker

YAML:

- hosts: core
 tasks:
 - name: Describe router interfaces
 ios_interface:
 name: "{{ item.name }}"
 description: "{{ item.description }}"
 state: present
 provider: "{{ credentials }}"
 with_items:
 - { name: Ethernet0/0, description: “One" }
 - { name: Ethernet0/1, description: “Two” }

<copy-config>
 <target>
 <startup/>
 </target>
 <source>
 <running/>
 </source>
</copy-config>

Challenges Achievements Conclusions Q&A

More Information in the Network Automation eAcademy

https://wiki.geant.org/display/NETDEV/OAV+Training+Portal

• Formats: YAML (30')

• Formats: XML (60’)

• Formats: JSON (45’)

https://wiki.geant.org/display/NETDEV/OAV+Training+Portal
https://e-academy.geant.org/moodle/course/view.php?id=129
https://e-academy.geant.org/moodle/course/view.php?id=132
https://e-academy.geant.org/moodle/course/view.php?id=66

www.geant.org

Thank You!

https://wiki.geant.org/display/NETDEV/NeA
network-eacademy@lists.geant.org
netdev@lists.geant.org

Automating with Google Sheets
Amy Liebowitz - University of Michigan

● At U of Michigan we use Google Sheets for network projects
○ Cut sheets for network migrations
○ VLAN port assignments for new access layer devices
○ Core point-to-point and loopback assignments

● More convenient than formal tools/databases
○ Easy to use by non-technical people (like PMs)
○ Easy to share and edit
○ Printable for field technicians

● Wouldn’t it be nice if we could derive network configurations from these?
○ You can, and it’s not that hard!
○ Enter gspread - a python api for Google Sheets
○ (NB: If you’re more comfortable with javascript check out Google Apps Script)

Automating with Google Sheets

● Step 1: Set up a Service Account
○ “Bot” account will generate credentials that can be used by your code.
○ Share a spreadsheet with the bot account’s email and your code can access it just like any

other user
■ We share our network projects folder with our bot account
■ We store our bot account’s credentials in Cyberark

● Step 2: Create a Spreadsheet
● Step 3: Write code to pull in spreadsheet data

○ gspread’s get_all_records method generates a list of dictionaries keyed on column headers
● Step 4: Create a Template
● Step 5: Generate configlets!

https://docs.google.com/spreadsheets/d/1W9wAzB7t3ttj2Dl_M5KnImShfwOS8hLvcyE-QwvGf1w/edit#gid=0
https://github.com/amylieb/gspread-example/blob/main/create_configlets.py
https://github.com/amylieb/gspread-example/blob/main/template.j2

Automating with Google Sheets

● References
○ gspread docs: https://docs.gspread.org/en/v5.10.0/index.html
○ gspread example repository: https://github.com/amylieb/gspread-example

https://docs.gspread.org/en/v5.10.0/index.html
https://github.com/amylieb/gspread-example

Tapas: DiffSync
Compare & Sync two different data-sources

James Harr, Sr NetDevOps Engineer, Internet2

[15]

The Typical Pattern

One-off code

● What if it already exists?
● What if it exists and it shouldn't?
● Should I delete in B if it's missing in A?

○ What if I need to change this?
● What if I only want to update objects that

exist in both?

System A System B

(just here for animation)

[16]

DiffSync - The framework

System A System B

load()
create()
update()
delete()

load()
create()
update()
delete()

Compare / Sync

Common
Model

a = AdapterA()
b = AdapterB()

a.load()
b.load()

diff = a.diff_to(b)
a.sync_to(b)

Adapter A Adapter B

[17]

Defining the Model

from diffsync import DiffSyncModel

class Device(DiffSyncModel):
_modelname = "device"
_identifiers = ("name",)
_shortname = ()
_attributes = ("addr", "model", "sn")
_children = {"interface": "interfaces"}

name: str
addr: Union[IPv6Address, IPv4Address]
model: str
sn: Optional[str]

interfaces: List[Interface]

[18]

Defining the Model

class Interface(DiffSyncModel):
_modelname = "interface"
_identifiers = ("device_name","intf_name")
_shortname = ()
_attributes = ("description", "speed")
_children = {}

device_name: str
intf_name: str
description: Optional[str]
speed: Optional[int] # Mbps

[19]

Defining an Adapter

class NautobotDevice(Device):
pass

class NautobotInterface(Interface):
pass

class NautobotBackend(diffsync.DiffSync):
device = NautobotDevice
interface = NautobotInterface

def load(self):
...

[20]

Defining an Adapter

class NautobotBackend(diffsync.DiffSync):
def load(self):

d1 = Device(name="rtr1", addr="2001:db8::1",
 model="8201", sn="1234")

self.add(d1)

intf1 = Interface(device_name="rtr1", name="eth1/1")
self.add(intf1)
d1.add_child(intf1)

[21]

DiffSync - providing a framework

System A System B

load() load()

Compare / Sync

Common
Model

a = AdapterA()
b = AdapterB()

a.load()
b.load()

diff = a.diff_to(b)
print(diff.str())

Adapter A Adapter B

[22]

Viewing the Diff

device
 device: rtr1 MISSING in SNBackend
 interface
 interface: rtr1__eth1/1 MISSING in SNBackend
 interface: rtr1__eth1/2 MISSING in SNBackend
 device: rtr2 MISSING in NautobotBackend
 interface
 interface: rtr2__eth1/1 MISSING in NautobotBackend
 interface: rtr2__eth1/2 MISSING in NautobotBackend
 device: rtr3
 sn NautobotBackend(abc123) SNBackend(def456)
 interface
 interface: rtr3__eth1/3 MISSING in SNBackend

[23]

DiffSync - providing a framework

System A System B

load() load()

Compare / Sync

Common
Model

a = AdapterA()
b = AdapterB()

a.load()
b.load()

diff = a.diff_to(b)
a.sync_to(b)

Adapter A Adapter B

create()
update()
delete()

[24]

Saving Data

class SNDevice(Device):
sn_id: str # Stashed UUID for the Device in SN

@classmethod
def create(

 cls,
 diffsync: SNBackend,
 ids: Dict[str, str],
 attrs: Dict[str, str],

) -> DiffSyncModel | None:
sn_id = service_now_api.create(...)
return cls(**ids, **attrs, sn_id=sn_id)

[25]

Saving Data

class SNDevice(Device):
def update(

self,
attrs: Dict[str, str],

) -> DiffSyncModel | None:

service_now_api.update(id=self.sn_uuid, ...)

return super().update(attrs)

[26]

Saving Data

class SNDevice(Device):
def delete(self) -> DiffSyncModel | None:

service_now_api.update(id=self.sn_uuid, status="DECOM")

return super().delete()

[27]

DiffSync - what does this get you?
● Structured development
● Re-run sync process
● Potentially more than just 2 "backends"
● Easier testing

@patch("nautobot.api_call")
def test_load(...):

m = MockBackend(); m.load() # <-- mock data
a = MyBackend(); a.load()
diff = m.diff_to(a)
assert not diff.has_diffs() # <-- yay

● Selective-sync with (nearly) the same code
a = MyBackend()
a.load_site("building1")

Tapas: Bash Incantations

Shannon Byrnes, NetDevOps Engineer, Internet2

[29]

• There is a lot you can do and glean

with a folder of configs and bash

one-liners. No Python involved.

• This tapa will show a few bash

commands using a folder of configs

• Note: ChatGPT isn’t bad at

generating fake configs if you’re

detailed enough.

Bash Magic with Config Files Our switch configs are FQDNs

[30]

for SWITCH in $(ls | grep coolu.edu); do echo $SWITCH; grep -c "^
switchport access vlan 100$" $SWITCH; done

1. Number of Ports by VLAN ID

for SWITCH in $(ls | grep
coolu.edu)
do

echo $SWITCH
grep -c "^ switchport access
vlan 100$" $SWITCH

done

Incantation Form

Script Form

[31]

1. Number of Ports by VLAN ID

for SWITCH in $(ls | grep coolu.edu)
do

echo $SWITCH
grep -c "^ switchport access vlan 100$" $SWITCH

done

Script Form

Return matching lines as a
Count.

Only match lines that start
with a single space followed

by the rest of the pattern.

This is the filename we
capture in the top line on

each loop.

Print filename so we know
which device we are looking at

[32]

for SWITCH in $(ls | grep coolu.edu); do echo $SWITCH; egrep
'^(interface | switchport access vlan 666$)' $SWITCH; done

2. Find Available Ports Based on a Black Hole VLAN

for SWITCH in $(ls | grep coolu.edu)
do

echo $SWITCH
egrep '^(interface | switchport

access vlan 666$)' $SWITCH

done

Incantation Form

Script Form

[33]

2. Find Available Ports Based on a Black Hole VLAN

for SWITCH in $(ls | grep coolu.edu)
do

echo $SWITCH
egrep '^(interface | switchport access vlan 666$)' $SWITCH

done

Script Form

Match On
Line starts with exactly “interface “

OR
Line exactly matches “ switchport access vlan 666”

{
Same start

[34]

for SWITCH in $(ls | grep coolu.edu); do echo $SWITCH; egrep
'^(interface | switchport access vlan 300$)' $SWITCH; done

3.A Move Switchports From One VLAN to Another

for SWITCH in $(ls | grep coolu.edu)
do

echo $SWITCH
egrep '^(interface | switchport access vlan 300$)' $SWITCH

done

Incantation Form

Script Form

[35]

3.A Move Switchports From One VLAN to Another
Output

None here!

[36]

< OUR LAST COMMAND > | sed 's/vlan 300/vlan 100/g'

3.B Move Switchports From One VLAN to Another

for SWITCH in $(ls | grep coolu.edu); do echo $SWITCH;

egrep '^(interface | switchport access vlan 300$)' $SWITCH; done |

sed 's/vlan 300/vlan 100/g'

Incantation Form

Full Incantation

[37]

3.B Move Switchports From One VLAN to Another

Tada! Now you can copy and paste for each
device.

As we know, unless a VLAN change would
occur, all the extra lines will be no-ops. However,
some cleanup will be easier on the eyes, so I
won’t stop you.

Tapas: Getting Started with Ansible

AJ Ragusa, Manager Network Automation and Performance - GlobalNOC

What is Ansible?

● Software tool for simple but powerful automation on cross-platform systems.
● Common use cases:

○ Application Deployment
○ Updates
○ Cloud Provisioning
○ Configuration Management
○ Intra-service orchestration
○ Any reproducible tasks!

● Generally Idempotent - each module is different but most are idempotent
● Support for many different network devices and protocols

○ Cisco (IOS and IOSXR), Juniper, Arista, Aruba

Playbooks and Tasks

● Playbooks are how “tasks” are organized to be executed on the selected
devices

○ Playbooks also specify inventories and hosts to be applied to as well as any additional
parameters needed for those tasks (variables, roles, collections)

○ Playbooks are written in YAML
○ Can do loops, use blocks, and re-use code using Roles and Collections

● Tasks are “Actions” that should be applied to the selected devices and must
be contained inside of a play

○ Tasks should be idempotent in most cases (every time you run it the end state should be the
same)

○ Tasks is the smallest unit that can be executed in Ansible

Inventory + Roles + Collection

● The Inventory is the set of hosts that can be executed on by an ansible play
○ Can also contain additional variables for each device
○ Usually specified in JSON/YAML/INI format

● Roles provide the ability to re-use tasks across multiple playbooks
○ Written in YAML can be included into multiple playbooks
○ Individual tasks inside of the role can be executed by the playbook
○ Essentially allows for code re-use

● Collections provide a higher level of re-use, can include playbooks, roles,
modules and plugins

○ Similar to roles, collections can be included in your playbook

Lets build an Inventory

Super Basic inventory
INI format

YAML format

Inventory “assigning variables”

Here is my inventory

My First Playbook
Name of the playbook (optional) and hosts
specifies the hosts to execute it on

First task - run a shell command “uptime”
and store the response as “results”

Tasks is an array of the tasks

Display the results using the “debug” task

output

Roles/Collections for common devices
use Ansible Galaxy to install some roles

● (Role) ansible-galaxy install Juniper.junos
● (Collection) ansible-galaxy collection install cisco.iosxr

We can then use these Roles/Collections to interact with the devices

Lets do something more interesting

Upgrade a Juniper with redundant REs and do it as hitless as possible

Steps:

● Download the new code version
● Disable Chassis Redundancy
● Upgrade RE1
● Wait until RE1 comes back up
● Swap Mastership
● Upgrade RE0
● Wait until RE0 Comes back up
● Swap back to RE0
● Re-enable Chassis redundancy

Advanced Ansible

● AWX - webUI for your playbooks / workflows
○ Store credentials
○ REST API

● Vaults
○ Encrypted storage of credentials

● Jinja2
○ Templates with REST integrations

